
Int. J. Production Economics 131 (2011) 183–193
Contents lists available at ScienceDirect
Int. J. Production Economics
0925-52

doi:10.1

n Corr

E-m

t.spengl
journal homepage: www.elsevier.com/locate/ijpe
Modeling and simulation of order-driven planning policies
in build-to-order automobile production
Thomas Volling n, Thomas S. Spengler

Institute of Automotive Management and Industrial Production, Technische Universität Braunschweig, Katharinenstraße 3, D-38106 Braunschweig, Germany
a r t i c l e i n f o

Article history:

Received 17 July 2008

Accepted 10 January 2011
Available online 20 January 2011

Keywords:

Automobile production

Build-to-order

Production planning

Available-to-promise

Simulation
73/$ - see front matter & 2011 Elsevier B.V. A

016/j.ijpe.2011.01.008

esponding author.

ail addresses: t.volling@tu-braunschweig.de (

er@tu-braunschweig.de (T.S. Spengler).
a b s t r a c t

In adopting build-to-order order fulfillment systems, automotive companies strive to better synchro-

nize their production output with market demand. This essentially gives rise to a new paradigm in

production planning. Since all business is linked to customer orders, the operational performance is

substantially determined by order-driven planning. Therefore, a clear understanding of the associated

planning tasks, order promising and master production scheduling, as well as their dynamic interaction

is essential. Based on the analysis of the decision situation of order-driven planning in build-to-order

settings, we provide a framework comprising separate interlinked quantitative models for order

promising and master production scheduling. The focus of the contribution is on the modeling and

evaluation of both models in a dynamic setting. The approach is evaluated by means of a simulative

analysis using empirical data from the automotive industry. Conclusions regarding the potentials of

such systems with respect to customer service, the leveling of resource utilization, and holding are

presented.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Much has been changing since Henry Ford’s ‘‘we believe [y]
that no factory is large enough to make two kinds of products’’
(Ford, 1988, p. 82). With their Scion brand Toyota joined the race
for offering customers an ever increasing product variety; a trend
which has been characterizing the automotive industry through-
out the last decades (Lee et al., 2005; Pibernik, 2005). This
development has been recognized to be driven by two factors.
On the demand side, customization is driven by the improved
competitive position of companies which address individual
customer’s needs (Kotler, 1989). On the supply side, customiza-
tion strategies have been significantly promoted – if not been
made possible at all – by advances in product design and
manufacturing as well as information technology (Da Silveira
et al., 2001; Jiao et al., 2003). Based on these advances it became
possible to postpone the point of product differentiation after
customer orders are received, by combining standardized mod-
ules within final assembly (Andres, 2006). The corresponding
strategy is referred to as build-to-order (BTO) production.

The main challenge companies have to address when pursuing
BTO production lies in mastering the increased exposure to
ll rights reserved.

T. Volling),
demand variability (Holweg et al., 2005). In contrast to make-
to-stock order fulfillment systems, where inventory is used to
hedge against short-term demand variability and to facilitate an
economic mode of production, BTO directly links production
activities to market dynamics. Reasons for these dynamics are
variations in the timing and specifications of customer requests
(i.e. the demand sequence), the resulting model mix (demand
structure), and the aggregated demand per period (demand level).
Considering the limited flexibility of automobile production
systems in terms of production and procurement capabilities,
the synchronized adjustment of capacity with the volatility of the
market environment is not viable. Instead, adequate control
concepts are needed to match the supply of resources with the
demand for products (Alford et al., 2000; Holweg and Pil, 2004,
p. 105). These encompass policies for the determination of due
dates in response to customer requests as well as for the
consolidation of these quoted requests into production plans that
allow for an economic mode of production. The associated
planning tasks are referred to as order-driven planning (ODP).

The increasing interest in BTO production is likewise reflected
by the fact that leading business software providers have devel-
oped commercial applications to support ODP for BTO production
as integral part of their Advanced Planning and Scheduling (APS)
Systems (Abraham, 2002; SAP, 2005a). In order to fully benefit
from such systems, however, models are required, which provide
decision support for ODP. To this end, the performance of such
models in dynamic settings, as it is the case in BTO automobile
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production, needs to be well understood. Despite this fact there is
very limited work on this subject.

The aim of this paper is to model and simulate ODP policies for
BTO automobile production. The contribution is threefold. First, we
provide an in-depth analysis of the decision situation of ODP and
derive a framework comprising separate modules for order pro-
mising and master production scheduling. Second, we develop
mathematical models for both modules and introduce three plan-
ning policies which result from the combination of these models.
The third contribution is that we perform a simulation study to
quantify the potentials of each planning policy with respect to
customer service, the leveling of demand, and holding. To validate
the modeling approach, we analyze the controlling influence of the
relevant structural model elements. The most important feature is
that we explicitly address the dynamic interaction of the ODP
planning modules in model development and evaluation. The
remainder is organized as follows: In Section 2, we will review
prior work. The problem setting is characterized in Section 3.
Based on that, models will be presented in Section 4 and analyzed
using discrete event simulation in Section 5. The findings will be
summarized in Section 6.
2. Literature review

Work on the performance of order fulfillment systems in
dynamic environments is limited. Recent papers have been
published by Holweg et al. (2005) as well as Brabazon and
MacCarthy (2006). Subject of the former contribution is the highly
aggregated analysis of BTO order fulfillment systems using a
system dynamical approach. The latter investigates potentials
and risks of an order fulfillment concept entitled virtual-BTO.
This concept essentially allocates customer requests to (pre-)
specified products planned for production or kept in inventory.
The authors set up a discrete event simulation model for the case
of the automotive industry. In contrast to the problems studied in
these studies, our concern is not on order fulfillment when capa-
city is represented by products which have been fully specified
based on forecasts, but on the explicit modeling of bottleneck
capacity. Individually configured customer requests are thus
checked against the unused capacities upon their entry into the
system. This goes along with a capacity oriented approach of
hierarchical production planning instead of material oriented
procedures.

Regarding decision support for ODP, two research streams can
be distinguished. Within the first stream the focus is on the
analysis of the customer interaction, i.e. the promising of custo-
mer requests. A second stream has evolved from work on
assembly line balancing and sequencing. The focus of which is
to develop decision models for the master production scheduling
of orders. Both streams are briefly reviewed in the following.

The objective of work on order promising is to support
decisions of whether to reject or quote customer requests. Two
methodological approaches can be distinguished. In batch order

promising orders are collected over a certain time span, and are
subsequently processed simultaneously. Numerous approaches
have been provided (Chen et al., 2001, 2002; Jeong et al., 2002;
Pibernik, 2005). These models seek to maximize contribution
margin with respect to holding, production, and procurement
costs as well as ‘soft’ costs such as penalties for late delivery or
low capacity utilization. A central finding is that, if previously
promised due dates and quantities are treated as constraints for
subsequent planning cycles, good results can be obtained for
rather large batching intervals. A reduction of the intervals results
in the significant deterioration of the planning performance (Chen
et al., 2001). A similar approach is introduced by Fleischmann and
Meyr (2004). To avoid the drawbacks of short batching intervals,
the authors propose an integrated assessment of order promising
and master production scheduling. They however do not elabo-
rate on the consequences in terms of modeling and performance.
A drawback with batch approaches is that they do not support the
interaction between customer and company. Real-time approaches

therefore build on an ad-hoc assessment of the ability to deliver
at a certain point in time. A recent review is given by Moses et al.
(2004). Optimization based real-time approaches have, to our
knowledge, only been presented for academic examples (e.g.
Raaymakers et al., 2000; Wester et al., 1992; Kate, 1994). The
objective is to quickly determine detailed schedules in job shop
environments. Due to the complexity of the problem, the scal-
ability of the approach is limited. One exception is Robinson and
Carlson (2007). The focus is on the dynamic pegging of material in
multi level production. Resource constraints are not incorporated
into the model. To facilitate a responsive order promising mecha-
nism, which can be used as an order winning factor within the
sales processes, we develop an optimization based real-time
approach. The structure of the objective function is somewhat
similar to the batch models discussed above. Yet, to avoid the
downside of long response times attributed to extended batching
intervals, as well as the myopic performance of short ones, we
integrate the model into a framework, which allows for asyn-
chronous re-planning. This framework consists of distinct models
for order promising and master production scheduling. Resource
constraints are explicitly taken into account.

There is a rich body of literature considering questions of
master production scheduling. The underlying structure of our
model is thereby similar to models used for order-driven produc-
tion planning in mixed model scenarios. Based on Hindi and
Ploszajski (1994), Bolat (2003) provides solution procedures for
the problem concerning the selection of orders to be produced in
the upcoming period out of a pool of previously quoted orders.
The objective of the resulting multi-dimensional knapsack pro-
blem is to minimize delivery date dependent costs. For a similar
decision situation, Ding and Tolani (2003) present a lexicographic
goal programming approach. Unlike these approaches, we do not
assume orders to be exogenously given, but explicitly model
order promising and master production scheduling as distinct,
interdependent planning functions. Therefore, we are firstly able
to capture the impact of production planning routines on the
responsiveness and reliability of the order fulfillment system and,
vice versa, that of order promising decisions on the performance
of production planning. Boysen (2009) presented a model that
integrates aspects of sequencing and optimization-based batch
order promising. The objective of the approach is to minimize
delivery dependent costs for a mixed model scenario. Further
model formulations are presented, which incorporate order selec-
tion decisions, capacity adjustments and sequencing. In contrast
to our approach, the focus is on a static decision situation without
any information dynamics.
3. Problem setting

In the remainder, we consider ODP in BTO automobile produc-
tion. We distinguish a real-time order promising (OP) model and a
master production scheduling (MPS) model, executed asynchro-
nously based on rolling horizons. Both models are interlinked by
information flows such that we obtain the planning system
illustrated in Fig. 1.

The process cycle of ODP is as follows. Incoming customer
requests are processed individually upon their arrival within the
OP procedure (1). OP results into a production period for the
specific configuration of the order. This is done by taking into
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account the lead time, the currently available capacities (2) and
sales quotas (3), which are used to coordinate the different sales
channels of automotive OEMs (Meyr, 2004). The quoted offer and the
delivery date that results from the production period are returned to
the requester (4). In case the offer is accepted, a preliminary
production order is generated and passed on to MPS (40).

The objective of MPS is to coordinate production, procurement
and sales on the short-run in order to facilitate an efficient mode
of production (Vollmann et al., 2005, p. 169). This is done by
taking into account the set of accepted orders with specific
configurations and quoted due dates (40) as well as aggregate
capacity constraints, which are originating from the subordinate
master production planning and are used for the mid-term
coordination of production and sales (5). MPS results in instruc-
tions for downstream planning tasks such as material require-
ments and sequencing planning (6) as well as in updated data
regarding unused capacities, which is again transferred to OP (2).
As follows, MPS defines the factual production period of the
preliminary production orders. Since the decision situation of
MPS is different to that of OP, the factual period does not
necessarily coincide with the one derived from the promised
due date. In this case the order is either produced earlier than
requested or it is delayed. The consequences in terms of customer
service are elaborated on in more detail below. MPS planning is
executed asynchronously based on rolling horizons. Accordingly,
only the first period of each planning horizon is put into practice
and passed on to downstream planning. The other ones are
updated with respect to new information available (i.e. the newly
promised orders) in the course of consecutive planning cycles.

Considering the illustrated decision situation, two dimensions
of customer service can be distinguished. The difference between
the requested delivery date and the quoted date is referred to
as response delay. Since the requested date is given exogenously,
the OP scheme can be employed to influence this performance
indicator by adequately setting the period quoted to the custo-
mer. In order to assure the feasibility of this quotation, a pre-
liminary production order needs to be generated which reserves
the capacities necessary to serve the request. This fact is illu-
strated by the left hand side of Fig. 2. Case (a) corresponds to an
assignment according to the lead time of the production order.
The order would thus be completed just in time and the requested
date could be confirmed. If capacities do not allow for the assign-
ment indicated by case (a), the order could be filled by production
in advance of the requested period (b). In this case, the finished
product needs to be held on inventory for the time remaining, if
the customer cannot be convinced of an earlier delivery. Lastly,
the production of the order could be delayed (c). This would
increase flexibility in production but would also require
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convincing the customer of a delivery later than requested. The
response delay can thus be both, negative (b) and positive (c).

A second dimension of customer service arises from the fact
that there typically are some periods between the order entry and
the point in time, when the order is ultimately passed on to the
production system for completion, the so called order freeze. The
order might therefore be re-assigned, if this allows for a more
efficient mode of production. This is done in the course of MPS,
which in contrast to OP takes into account all orders that have
been quoted up to that point in time (batch approach). As a
consequence of the re-assignment three further cases can be
distinguished. Case (A) represents the default case where the
preliminary assignment is kept unchanged. In case (B) the order is
moved forward in time. In this case the finished product has to be
stored until delivery or the previously quoted delivery is changed.
Case (C) results in the order being delivered late. The time span
between the quoted and the factual delivery is referred to as
confirmed fill delay. The distinction between both service mea-
sures is necessary, since requested delivery dates are typically
quite flexible in the automotive industry. Having once quoted a
period, however, there is a contractual agreement. Deviating from
this quotation might result in severe penalties. Against this
background we restrict the analysis to the use of holding, if the
MPS assignment is earlier than that of OP.

In addition to customer service, ODP determines the aggre-
gated production plans. If the generated plans do not comply with
the configuration of the production system, inefficiencies in terms
of increased production and procurement costs result. Since
production and procurement capacities are regarded as fixed for
the planning horizon considered, a leveled utilization of the
resources is to be achieved (Engel and Zimmermann, 1998).
Leveling allows for efficiency in production and helps minimizing
the variability which is propagated into the supply chain, redu-
cing system costs therewith.

The decision situation of ODP is consequently characterized by
multiple, potentially conflicting objectives, which are influenced
by the dynamic interaction of OP and MPS. Moreover, the decision
situations of OP and MPS differ significantly. OP has to process a
large number of customer requests and generates an output that
is directly perceived by customers. Major requirements to be met
by OP policies therefore regard the responsiveness, which deter-
mines the latency in quoting customer requests, as well as the
granularity of the generated quote, which may be the day or week
of delivery. The situation is different, if MPS is considered. Since
there is no output, which is directly perceived by the customer,
response time requirements are less restrictive. However, all
accepted orders need to be taken into consideration when con-
structing production plans. This results into a significantly higher
complexity. In order to take the distinct characteristics of both
planning tasks into account, the presented approach is based on
separate models for OP and MPS. Against this background, the
question will need to be addressed in the remainder, of how OP
and MPS decision making can be coordinated such that an
acceptable overall performance with respect to service and
efficiency criteria is obtained in the considered setting of BTO
production.

The presented framework is of generic nature. It is not
relevant, whether the requesting party is a final customer or an
intermediate dealer. In the automotive industry, however, the
dominating sales channel is via dealers. Online sales directly to
customers have not been found to account for a major share, yet
(Holweg and Miemczyk, 2002). Accordingly, dealers are helping in
translating the requirements of the customer into product char-
acteristics and resource demand, respectively. This is usually done
with the use of product configuration tools, dealers can operate
while negotiating with the customer. With respect to the
framework illustrated in Fig. 1, these tools generate the input
needed for OP. We will therefore assume in the following that a
dealer is formulating the requests and returned the quoted offers.
In this, the dealer cooperates with the manufacturer such that
both strive to minimize system costs. Moreover, we assume that
all orders have been back-scheduled with respect to their produc-
tion and distribution lead times. The analysis can thus be
restricted to the start of production. We also assume that sales
quotas are checked separately and do not need to be considered
within ODP. Lastly, we restrict our analysis to one production
system. This results in the models introduced in the following
section.
4. Modeling order-driven planning

Time is divided into intervals t ðtZ1Þ of equal length. The
objective of OP is to assign randomly arriving customer requests
iði¼ 1,. . .,IÞ to planning periods tðt¼ t,. . .,tþTmaxÞ such that the
associated costs cOP

it are minimized. To generate consistent and
feasible quotes, two constraint sets have to be considered. Firstly,
capacities need to be sufficiently available to serve the request.
Secondly, the assignment cannot precede the first disposable
period t, which is the first period that has not yet been frozen.
We use production coefficients air to transform each order’s
product configuration into capacity requirements for each poten-
tial bottleneck resource r. These resources likewise comprise
capacities of the production system as well as the availability of
major components (heavy items), which are supplied just in time
(Boysen, 2009; Meyr, 2004). The combined index set will be
referred to as O.

In this model formulation the costs of the assignment cOP
it are

used to model the costs encountered depending on the quotation
of a request. The costs of the assignment can be conceptualized as
follows. It is certainly valued most, if the order is fulfilled as
requested by the customer. If capacity constraints do not allow for
such an assignment, the first option is to encourage the customer
to agree with an earlier or later delivery. Assuming that any
period other than the requested is of negative value to the
customer, the dealer might need to offer appropriate incentives
or encounter a loss of goodwill. This fact can be conceptualized
by delivery dependent costs, which are increasing with the time
span between the requested and the quoted period. The second
option is to make use of holding. This is possible if capacities are
sufficiently available to produce the request earlier than
demanded. However, holding results in additional costs such as
insurances fees and capital commitment costs. These costs are
increasing with the time span between the feasible (early) period
and the one quoted to the customer. Accordingly, the following
cases can be distinguished. If the feasible period is later than the
requested, the costs of the assignment cOP

it equal the delivery
dependent costs. If the feasible period is earlier than the
requested, the costs of the assignment can be calculated as the
sum of holding and delivery dependent costs. This case is
illustrated in Fig. 3. Assuming linear cost functions, the optimal
quotation policy is to either quote the feasible period – if the
marginal delivery depended costs are lower than the marginal
holding costs – and to quote the requested period vice versa. In
the automotive industry the delivery date is typically quite
flexible within the negotiation phase, while holding costs account
for a significant share of total costs (Krog, 2006). We will there-
fore restrict the analysis to the case that the dealer will always
quote the delivery derived from the production period.

The result of the OP procedure is a quoted planning period, or
the corresponding delivery date, for a certain product configura-
tion. Executing OP every time an order arrives will yield a set of
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preliminary production orders C, which is specified in terms of
product configuration and production period. This set is subse-
quently transferred to MPS.

MPS is executed based on rolling horizons, with each planning
horizon covering T periods. Due to its interface function between
the production system and sales, two criteria need to be con-
sidered. Firstly, MPS generates instructions for subsequent plan-
ning. One possibility to incorporate leveling is to minimize
shortfalls on specified lower levels of capacity utilization capmin

rt .
These result from subordinate master production planning and
determine efficient operating points of the production system
(Holweg and Pil, 2004, p. 33, 4). The same holds true for just in
time procurement. Here, the results of master production plan-
ning are used to fix average component supply quantities per
period. The factual demand may vary in between certain levels
around these average quantities. However, if the order quantity
falls below the lower level agreed on with the supplier, the OEM
has to provide the supplier with appropriate compensation. In the
remainder let ctp�rt denote the standardized shortfalls on the
lower level of the capacity utilization or the minimum component
supply per period.

The second criterion to be regarded in MPS results from the
interaction with OP. MPS updates the capacities used for promis-
ing newly arriving requests. If capacity shortages can be avoided,
MPS positively influences the ability to serve newly arriving
requests and therewith the response delay. This objective is
equivalent to the leveling of the available capacity. Let ctpþrt
denote the available capacity, standardized with respect to the
maximum capacity per resource and period capmax

rt .
In the following we will introduce a segmented objective func-

tion to simultaneously incorporate both objectives into MPS.
The modeling approach is illustrated in Fig. 4. Given a stationary
ordering process, the booking curve, which quantifies the
expected share of orders placed for production in each period
tþt (tZ0), is strictly decreasing with t (Meyr, 2004). Each
realization of the stochastic ordering process will generally have
some degree of variation to this ideal booking curve. In segment-
ing the MPS objective function, both leveling (1st objective) and
the ability to serve newly arriving requests (2nd objective) can
be addressed simultaneously. Within the first interval on average
most orders have been placed. To include leveling into the objec-
tive function, the standardized shortfalls on the targeted resource
utilization ctp�rt are minimized. Within the second interval the
inflow of new customer requests is expected to be higher. For this
interval bottlenecks can be avoided by maximizing the unused
capacity ctpþrt .

In addition to the first two, a third criterion is considered to
model the coupling of OP and MPS. The costs cMPS

it quantify the
consequences of bringing forward or delaying an order, given a
promised delivery date.

The contribution to leveling and the response delay can hardly
be quantified in monetary terms. Therefore, we will make use of
the non-monetary indicators ctp�rt and capmax

rt . The combination of
the two non-monetary criteria and the costs of the assignment
into a single objective function requires for the application of a
method from multi-criteria decision making. Vast research is
available on multi-criteria decision making (Steuer et al., 1996).
The most straightforward implementation is the use of simple
additive weighting (SAW), which we will adopt in the following.
The idea is to use weighting factors to scale the relative impor-
tance of the multiple criteria. A complete list of symbols is given
in Appendix A.
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MPS results into an aggregated production plan. The assign-
ments of the first period of the planning horizon are in the
following passed on to sequencing and material requirements
planning for further detailing. The particular orders are deleted
from the set C. All assignments other than those for the first
period are of temporary nature. In the remainder OP will be
executed every time an order enters the system (real-time
processing) while MPS is executed at the end of each period
based on rolling horizons (batch processing).
4.1. Master production scheduling

The mathematical program for MPS is given in (1)–(7). The aim
of the model is to assign all orders that have been quoted for
production in the planning horizon to production periods. For
these orders the quoted period falls into the interval [t, t+T�1].

In this, the binary variables xMPS
it are set to 1 if order i is assigned

to period t and 0 if otherwise.

Minimize pleveling
U

Xtþk

t ¼ t

X
rAO

ctp�rt�
XtþT�1

t ¼ tþkþ1

X
rAO

Pserviceðctpþrt Þ

þ
XtþT�1

t ¼ t

X
iAC

cMPS
it UxMPS

it ð1Þ

s:t:
capmin

rt þctprt�capmax
rt

capmin
rt

¼ ctp�rt 8rAO; t¼ t,. . .,tþk ð2Þ

ctprt

capmax
rt
¼ ctpþrt 8rAO; t¼ tþkþ1,. . .,tþT�1 ð3Þ

X
iAC

xMPS
it Uair ¼ capmax

rt �ctprt 8rAO; t¼ t,. . .,tþT�1 ð4Þ

XtþT�1

t ¼ t

xMPS
it ¼ 1 8iAC ð5Þ

ctprt,ctp�rt,ctpþrt Z0 8rAO; t¼ t,. . .,tþT�1 ð6Þ

xMPS
it Af0,1g 8iAC; t¼ t,. . .,tþT�1 ð7Þ

In order to reflect the divergent requirements discussed above,
we implemented two intervals for the objective function: the first
interval ranges from t to t+k and the second one from t+k+1 to
the end of the planning horizon, with 0rkoT�1. We did not
constrain the assignment of the orders to any of these segments,
as to take full advantage of the information available. To imple-
ment SAW we incorporated the weighting factor pleveling to assess
deviations to the lower level of the targeted capacity utilization of
resource r in period t (leveling aspects) and the weighting
function Pserviceð�Þ to assess the available capacity of resource r in
period t. The objective of the corresponding mixed integer
program is to minimize the relative shortfalls on the targeted
utilization levels ctp�rt, weighted by pleveling throughout the inter-
val [t, t+k], and to maximize the unused capacity ctpþrt , weighted
by Pserviceð�Þ throughout the interval [t+k+1, t+T-1]. The third term
of the objective function computes the order related costs of
assigning order i to period t as given by cMPS

it . These reflect costs
that are incurred when the periods of MPS and OP do not coincide
(i.e. holding, penalties).

The figures for the first interval result from standardizing
shortfalls on the targeted capacity utilization capmin

rt according to
inequalities (2). Those of the second interval are calculated as
given by inequalities (3). Constraints (4) assure feasibility with
respect to resource capacities, whereas ctprt specifies the prevail-
ing slack. The constraints (5) assure that each order is assigned to
one period, while constraints (6) and (7) define non-negativity
and binary coding for the variables. Input from OP is considered
by means of the order related costs cMPS

it , since they depend on the
promised period. In return, updated information on the available
capacity ctprt is transferred to OP.

4.2. Order promising

The OP model is given by (9)–(13). Each order is individually
assigned to a period [t, t+Tmax

�1], such that the associated costs
are minimized (9). In this, the length of the planning horizon Tmax

needs to be set sufficiently high, as to allow for at least one
feasible assignment. Note that in contrast to MPS only a single
order is processed at a time. Combinatorial effects can thus be
disregarded. As such, a rule based model description could be
used as well. Despite this fact, we make use of the mathematical
programming formulation since it is better suited to indicate
similarities and interfaces between both models.

The decision is modeled by the binary variables xOP
it , which are

set to 1 if the order i is assigned to the particular period t and 0, if
otherwise. The objective function consists of two terms. The first
one quantifies the costs of the assignment as introduced before.
It represents the primary objective of OP. In addition to that, a
second term is introduced in order to anticipate the calculus of
MPS. It rewards a potentially improved leveling of the model-mix.
This term is structurally identical to the one used within MPS and
regards all periods that fall into the first interval of the MPS
objective function. Since the costs of an improved leveling are not
readily assessable, a second multi-criteria decision situation
results. Again we make use of SAW. To this end, the relative
contribution of the particular order to decrease shortfalls on the
targeted capacity utilization ctp�rt is weighted by the non-negative
coefficient panticipation. Inequalities (10) incorporate resource con-
straints into the model. In this, the capacity available at the time
of the order arrival ctprt is updated with each order being
processed. Constraints (11) are computing the contribution of
the particular order to decrease shortfalls on the targeted capacity
utilization capmin

rt . Only those combinations of resources and
periods are considered that exhibit a shortfall greater than 0 at
the current execution of OP. These combinations are given by the
set Y

YAfðr,tÞ9ctprt4capmax
rt �capmin

rt ; rAO; t¼ t,. . .,tþkg: ð8Þ

Eq. (12) assure that the order is assigned to a period. Binary
coding is subject to (13).

Minimize
XtþTmax�1

t ¼ t

cOP
it UxOP

it þpanticipation
U

Xtþk

t ¼ t

X
rAO

ctp�rt ð9Þ

s:t: xOP
it Uair rctprt 8rAO, t¼ t,. . .,tþTmax�1 ð10Þ

xOP
it air

capmin
rt
¼ ctp�rt 8ðr,tÞAY ð11Þ

XtþTmax�1

t ¼ t

xOP
it ¼ 1 ð12Þ

xOP
it Af0,1g 8t¼ t,. . .,tþTmax�1 ð13Þ

4.3. Planning policies

Despite the fact, that OP and MPS are conceptualized
as distinct decision models, both of them interact with respect
to the achievement of service and efficiency objectives. As a
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consequence issues of coordination arise. We will in the following
discuss three planning policies:
a.
 The baseline policy, represented by a capacitated OP without
anticipation term ðpanticipation ¼ 0Þ; MPS is not considered. The
OP results are directly passed on to subsequent planning.
b.
 The non-reactive policy distinguishes between models for OP
and MPS. Anticipation is not considered ðpanticipation ¼ 0Þ.
c.
 The third policy is characterized by the fact, that components
of the MPS decision model are considered within the objective
function of the OP model ðpanticipation40Þ. Referring to
(Schneeweiß, 2003, pp. 42) this corresponds to an implicit

anticipation policy.

If the anticipation term is considered within the OP model, a
multi-criteria decision situation results. An assignment which
might be optimal with respect to the costs of the assignment, i.e.
the first term, might not be chosen, if the anticipated benefit for
the performance of the planning system is greater than the
increase in costs. To this end, a benefit is given, if the positive
effect with respect to the improved confirmed fill delay and the
leveling objective is valued more than the additional costs of the
assignment. However, since there is more information available at
the time of MPS, these positive effects may only be anticipated.
The solution of this trade-off is controlled by the parameter
panticipation. In the following we will evaluate the three policies
for ODP and the effect of the anticipation term using simulation.
5. Simulation experiments

Our simulation model captures the dynamic interaction of OP
and MPS. For the analysis we chose the following approach. First,
we investigate the validity of the proposed modeling approach.
The modeling approach is regarded valid, if the models developed
for OP and MPS are adequate to control the simulation response. If
so, the models provide decision support for ODP. A second goal
was then to analyze the performance of the presented planning
policies. The special focus here was on the effect of the
anticipation term.

Each simulation replication is performed in three steps. At
first, a demand sequence is generated. More specifically, this
sequence comprises a set of orders, which consist of a specific
configuration, an order entry date, and a preferred delivery date.
In a second step, this demand sequence is subject to the ODP
policy to be analyzed. Accordingly, each order is at first promised
individually and secondly assigned to a production period in the
course of MPS planning executed on rolling horizons (if applic-
able). In a third step, the results are evaluated. For the imple-
mentation we used Plant Simulation and Lingo.

5.1. Experimental data

We consider an autoregressive moving-average (ARMA)
demand process to derive the aggregated demand level dt of
period t according to dt ¼ 50þ0:8Uðdt�1�50Þ�0:1Uet�1þet

� �
with

ei �Nð0; 5Þ. ARMA processes have been widely used to model
time series and avoid the lack of internal consistency attributed to
IID-figures (Makridakis et al., 1998; Law and Kelton, 2000). The
brackets, d e, indicate that we rounded figures to integers. In a
second step, we computed requested lead times for each order
using a (truncated) normal distribution N(10; 2). Using these lead
times each request was back-scheduled to compute the order
arrival time. In order to reflect the situation of the automotive
industry we grouped the resources into option families. An
empirical distribution with specific take rates taker was used for
each option family to derive the demand for the associated
resources (the capacity coefficients air). For the analysis we
referred to empirical data as depicted in Appendix B (Holweg
and Pil, 2004, p. 31). This data results in 576 product
configurations.

Each simulation run covered 50 periods such that on average
2500 orders were processed. We set the maximum capacity per
resource and period to capmax

rt ¼ lUtakerUE½dt�. In this, the para-
meter l will be referred to as the capacity/demand ratio. The
lower level of the targeted capacity utilization capmin

rt was set to
80 percent of the maximal capacity, rounded to integers. We
assumed a linear cost function for cOP

it : each period earlier than
the requested added one unit to the costs while each period later
than the requested added five units. cMPS

it was set equivalent to cOP
it

for earliness. Tardiness was not allowed for. Hence, we set the
associated costs prohibitively high.

A piecewise linear term was implemented for the weighting of
the second term of the MPS objective function using the non-
negative coefficient pservice (14). Accordingly, free capacity is
incentivized up to a threshold value a. For the remainder we set
a to 30 percent.

Pserviceðctpþrt Þ ¼
pservicectpþrt for ctpþrt oa
pservicea else

(
ð14Þ

5.2. Model evaluation

We chose a differentiated approach to evaluate the perfor-
mance of ODP in order to better understand the prevailing effects.
Accordingly, we incorporated three performance measures
instead of a single, aggregated one. The customer-oriented per-
formance was evaluated by means of the average costs of the
assignment in the course of OP. In addition to that, the under-
utilization quantified by the cumulated figure for ctp�rt was
evaluated as measure for the compliance with resource-oriented
objectives. Finally, we computed the average number of periods
in which orders were held on inventory as a consequence of
re-assignments within MPS.

Since MPS was executed based on rolling horizons, it would not
be meaningful to evaluate the objective function values. We
therefore restricted the analysis to the final implementations
(i.e. each MPS execution’s first period), which corresponds to the
instructions passed on to sequencing as discussed in Section 3.

5.3. Experimental design

The experimental study was set up in two stages. The objective
of the initial phase was to validate the modeling approach for
each capacity/demand ratio. The models are regarded valid, if the
model parameters (independent variables) are capable of control-
ling the simulation response, i.e. the performance of ODP (depen-
dent variable). If this is the case, the parameters can be used to
solve the trade-off between service and leveling such that
decision support for ODP is provided. We set all parameters
except the weighting coefficients used to implement SAW to
constants. In particular the structural parameters such as the
product definition, take rates, and production and procurement
capacities were fixed. This replicates the decision situation in
industry, where structural parameters are generally fixed for
planning horizons considered within ODP. As a fourth experi-
mental factor the capacity/demand ratio was added, since the
performance of ODP was expected to depend on it. We chose
values of different order of magnitude for the weighting factors.
The resulting models follow the idea of lexicographic program-
ming and therefore allow for a differentiated assessment of the
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particular terms. The levels were set in accordance with the
results of a pre-test. The factors are summarized in Appendix B.

In a second phase we focused on the comparative evaluation of
the three planning policies introduced above. The objective is to
assess the potential of more complex mechanisms to coordinate
OP and MPS. The planning policy is determined by the weighting
factor panticipation. Accordingly, we varied the level of this factor
for different capacity/demand scenarios leaving the others
unchanged.

This cumulated in 16 configurations (called scenarios in the
following) to be analyzed in the first phase and 9 in the second. 50
replications were run for each scenario. Since we expected all
performance measures to be correlated with the demand scenario
(number of orders, preferred lead time, and model mix), we used
a common random number (CRN) approach.
Table 2
Summary of the effects for k¼4.

Criteria

Measure

Leveling

Under-utilization

Service

Costs of the

assignment

Holding

Average

periods on

inventory

pleveling (�) (�)a (+)

pservice (�)a (�) (+)

panticipation ( ) (+) (�)

a l¼1.0.
5.4. Results

We used analysis of variance (ANOVA) to identify factors
statistically controlling the simulation response. In this, we
conducted separate analysis for each performance measure and
for each capacity/demand ratio. In order to account for the CRN
approach chosen, we added a block variable entitled replication
(Rardin and Uzsoy, 2001). The level of significance was chosen to
0.05. Accordingly, all effects are significant which exhibit a
p-value lower than the Bonferroni’s alpha family (0.05) divided
by the number of statistical tests (8).

With respect to the average costs of the assignment, all main
effects, except that of pleveling for l¼1.2, were found to be
statistically significant (Table 1). An interaction effect between
pleveling and pservice was found for l¼1 while all others proofed to
be insignificant. For the average periods orders were held on
inventory all main effects but no interaction effect were found to
be significant. Considering the under-utilization, we found more
differentiated results. For the tight capacity scenario (l¼1) both
MPS weighting coefficients have an effect on either figure, while
for l¼1.2 only the weighting of the leveling term (pleveling)
exhibits a significant effect. The weighting of the anticipation
term (panticipation) does not show any controlling influence in this
regard. The high R2 values indicate a good fit of the models.

Based on the results of the first phase we may conclude that
the model parameters significantly control the trade-off between
service and leveling. The simulation experiments thus support the
validity of the proposed modeling approach.

The performance measures differ significantly with respect to
the capacity/demand ratio. If capacity is tight (l¼1), the costs of
the assignment of the baseline policy exceed those if l¼1.2 by
factor 8. The opposite holds true for the under-utilization. This
figure on average exceeds that for the tight scenario by factor 2.3.
The interpretation of this finding is that it is more likely to
achieve leveled schedules, when capacity is tight. Likewise there
Table 1

ANOVA results for k¼4. The level of significance is 0.05. The R2 values for the average

periods on inventory are 0.87 and those for the under-utilization are 0.95 for l¼1 and

l Source Average costs of assignment Average pe

Sum of squares F-value p-value Sum of squ

1.0 pleveling 0.31 9.68 0.00 0.96

pservice 9.42 294.56 0.00 5.19

panticipation 5.41 169.15 0.00 0.55

1.2 pleveling 0.004 0.19 0.66 48.08

pservice 0.65 31.62 0.00 3.56

panticipation 18.31 890.67 0.00 4.49
is an increased probability of capacity shortages, such that orders
can only be satisfied later than requested (resulting in increased
assignment costs). On the contrary, holding is more likely to be
used when capacity exceeds demand, since more orders might
need to be re-assigned to level the schedule. On average, the
figures for holding in case of l¼1.2 exceed those of the tight
scenario by factor 2.3.

ODP is able to solve the trade-offs between service, under-
utilization and holding, if the directions of the controlling effects
complement each other. In line with the objectives of the analysis,
ANOVA provides a statistical test to identify the controlling
effects of the model parameters on the performance of ODP. To
analyze the directions of these effects, additional analysis is
necessary. The results of this analysis are summarized in
Table 2. Accordingly, pleveling can be used to reduce under-utiliza-
tion while pservice controls the costs of the assignment. In both
cases there is a trade-off with holding. The weighting of the
anticipation term panticipation may in turn contribute towards
reduced holding, with the drawback of increased costs of the
assignment. To summarize, the effects are not merely statistically
significant, but also complement each other. The proposed models
can thus be used to control the relevant trade-offs of ODP.

From a conceptual point of view, the anticipation term
incorporates leveling aspects into OP and should thus be capable
of reducing the amount of re-assignments within MPS. More
complex ODP policies should therefore be more important, if
there is excess capacity. In order to shed light on this aspect, we
increased the resolution of the design for the second phase. As to
limit the number or experiments, we set the parameters pleveling

and pservice to a constant (pleveling
¼pservice

¼10). In this phase we
compared the performance of the non-reactive policy
(panticipation

¼0) and that of the implicit anticipation policy
(panticipation

¼6 and panticipation
¼10) with the performance of the

baseline policy and computed the 95% confidence interval for the
expected mean of the difference for each performance measure
(Fig. 5).

As can be seen from the simulation results, increasing the
weighting factor contributes towards reduced holding. Accord-
ingly, the number of average periods on inventory decreases
costs of assignment are 0.97 for l¼1 and 0.97 for l¼1.2. Those for the average

0.97 for l¼1.2. The table is continued in Appendix B.

riods on inventory Under-utilization

ares F-value p-value Sum of squares F-value p-value

43.71 0.00 964.92 90.37 0.00

236.40 0.00 273.90 25.65 0.00

24.89 0.00 10.11 0.095 0.33

439.82 0.00 4,821 872.92 0.00

32.57 0.00 116.42 2.11 0.15

41.09 0.00 39.77 0.72 0.34
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Fig. 5. Confidence intervals for the mean paired difference as compared to the baseline policy for pleveling
¼pservice

¼10 and k¼4. Figures except the average periods on

inventory (measured in periods) indicate the standardized difference with respect to the baseline policy. The first figure of each capacity/demand ratio corresponds to

panticipation
¼0, the second to panticipation

¼6, and the third to panticipation
¼10.
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(Fig. 5). However, there is a trade-off with the costs of assignment.
These increase with an increasing weighting of the anticipation
term. Accordingly, the relative advantage over the baseline policy
depicted in Fig. 5 decreases. This in particular holds true for high
capacity/demand ratios. For l¼1.2 and panticipation

¼10 the costs in
fact exceeds that of the baseline scenario. With respect to the
under-utilization no significant effects were found. Accordingly,
the findings from the simulation support the initial proposition:
the weighting of the anticipation term can be used to control the
trade-off between the costs of the assignment (OP) and holding,
yet without significantly influencing the under-utilization.

From a systems perspective, the coordination of OP and MPS is
improved, if the decrease in holding results into a net reduction in
costs despite the relatively higher costs of the assignment.

A weighting factor of 6, which constitutes an implicit antici-
pation policy, yields significantly lower figures for expected
holding if l41.0 as compared to the non-reactive policy
(panticipation

¼0). For l¼1.1, there is no significant difference in
the costs of the assignment nor in the under-utilization. The
implicit anticipation policy therefore improves the coordination
of the decisions towards the achievement of the performance
figures. For l¼1.2 no generalized finding is possible without
quantifying the costs of holding. This is due to the fact that there
is a significant trade-off between holding and the costs of the
assignment. For l¼1.0 no significant difference was found at all.

To conclude, the existence of excess capacity in fact increases
the potential of coordination and therefore the impact of more
complex ODP policies. However, no general conclusion can be
drawn. The advantageousness depends on the value of the
weighting parameters, which are subject to the cost structure of
the specific industry setting. In the automotive industry, for
instance, some OEMs face due date preferences which are rather
weak, while system costs related to under-utilization as well as
inventory are high. In this case the proposed modeling approach
can be used to decrease under-utilization and holding signifi-
cantly as compared to the baseline policy. To this end, high values
should be chosen for pleveling and panticipation.
6. Discussion of results and conclusions

Within this study we developed models for ODP in BTO order
fulfillment systems in the automotive industry and evaluated
their potential using simulation. Although the scope of the
analysis lies on rather general characteristics of automobile
production, it captures the key elements of real world order
fulfillment systems implemented in APS in both structural as well
as logical respects. By using empirical data, insights into the
dynamic interaction of OP and MPS could be obtained. These pave
the way for a more thorough understanding of how to design both
planning functions. The major findings of the study can be
summarized as follows:
�
 Conceptualizing ODP as a system of two interdependent
planning tasks takes the divergent characteristics of the
decision situation into consideration. For a setting that cap-
tures the key elements of automobile production, model
configurations have been developed, which effectively control
the performance of the ODP system.

�
 An anticipation term has been introduced to improve the

coordination between OP and MPS. For the study considered,
this term can be used to significantly reduce the need for re-
assignments within MPS without negatively influencing
under-utilization. Yet, there is an intrinsic trade-off with the
costs of the assignment within OP.

�
 As follows, the potential of complex ODP policies is large, if the

costs of under-utilization and that of holding are high as
compared to the costs of the assignment within OP. In this
case it is better to convince the customer of a delivery other
than requested, if this allows for a more efficient mode of
production or less holding.

�
 The potential of complex ODP policies likewise increases with

the amount of excess capacity. This is due to the fact, that both
the degrees of freedom as well as the necessity to level the
schedule increase, if there is more capacity than demand.

Simulation has been used to analyze the complex interaction
of OP and MPS in the context of BTO order fulfillment. The
simulation model captures the key elements of order fulfillment
systems used in the automotive industry. To run the simulation, a
number of parameters needed to be specified. With the objective
to provide in-depth insights into the performance of ODP policies
we systematically varied the models and their configuration as
well as the capacity/demand ratio. All structural and operational
parameters other than that were set to constants. To generalize
the insights provided above, future research on the impact of the
parameters on the potential of ODP policies is required. In
particular, we would expect three parameters to have a signifi-
cant impact on the performance:
1.
 The product variety, given by the number and frequency of
product options: In the simulation study we used empirical
data on the product definition from one selected OEM. How-
ever, as reported by Pil and Holweg (2004), companies in the
‘‘automotive sector differ dramatically in the level of variety
they offered’’. Future work is necessary to investigate the effect
of different strategies of product variety on the potential of ODP.
2.
 The distribution of the requested lead time. Requested lead times
vary in the automotive industry among countries and market
segments (e.g. fleet vs. retail). Since longer lead times positively
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influence the scope of planning decision within ODP, further
work is necessary to generalize the findings reported above.
3.
Table 3
Factorial design (figures in brackets indicate second phase).

Factor Denomination Levels Degrees

of
The span between the lower and upper level of the capacity
utilization: An increase in the flexibility goes along with a
decline in the relative importance of resource-oriented criteria.
Since MPS incorporates resource-oriented criteria into plan-
ning, this might result into a generally reduced relevance of
the MPS planning function as well. Further research is neces-
sary to shed light on this issue.

Due to the reasons elaborated on above, we implemented a
hierarchical approach. Incorporating more details from MPS into
OP would result into a higher model complexity and thus
extended quotation times. This would likewise increase the
probability of two or more customer request entering the system
simultaneously, which in turn causes further delays due to
sequential processing or inconsistencies in the case of parallel
processing (SAP, 2005b). In introducing separate models for OP
and MPS, our approach guarantees for short response times, while
ensuring feasible production plans. The potentials of the approach
are illustrated by the results provided above. The decomposition
of order-driven planning into two distinct planning tasks, how-
ever, gives rise to the question of how to adequately coordinate
these interdependent decisions. Referring to the classification
scheme introduced by Schneeweiß (2003) the coupling conditions
employed can be described as non-reactive and implicit anticipa-
tion. Further work is necessary to evaluate the potentials that
might be achieved by more sophisticated coupling mechanisms.

According to the analysis, the dynamic performance of order-
driven planning routines is significantly controlled by the configura-
tion of the mathematical programs. In using SAW, the developed
objective functions allow for the simultaneous optimization of
resource and customer-specific and thus originally conflicting objec-
tives. From a conceptual point of view, the use of SAW gives rise to
further questions. Firstly, we used identical weighting factors in our
analysis. In practical applications there might be differences in the
relative importance of resources or orders. This does for instance hold
true, if it is not equally important to achieve leveled master schedules
for all resources of the production system. As a consequence, the
adaption of a more differentiated modeling of the weighting terms
might be required. Since these parameters constitute exogenous
input for the presented approach this does, however, not confine
the applicability of the approach. Secondly and more importantly, the
use of parameters within the models gives rise to the more funda-
mental question of how to identify parameter settings which ade-
quately solve the trade-off between the performance measures for
particular industrial settings. The main obstacle with this approach is
that the evaluation of each configuration requires executing multiple
simulation runs. Even if the analysis is restricted to discrete para-
meter values which are kept identical for all resources, a combinator-
ial optimization problem has to be solved. Therefore the availability of
efficient search routines is essential. Techniques from simulation
optimization or artificial intelligence seem to be promising.

While there is more work needed to exploit the full potentials
of the approach, the paper shows that the presented framework
and the developed models can be used to improve order-driven
planning in BTO automobile production. This lays the basis for the
advancement of order-driven planning systems for this industry.
freedom

Weighting of the leveling

term

pleveling 10, 10000 1

Weighting of the service term pservice 10, 10000 1

Weighting of the anticipation

term

panticipation 0,(6),10 1 (2)

Capacity/demand ratio l 1.0, (1.1),

1.2

1 (2)
Appendix A. List of symbols

Indices and index sets

i customer requests/orders ði¼ 1,2,. . .,IÞ
t subordinate planning periods ðt¼ 1,2,. . .,TmaxÞ
t planning periods considered for OP and MPS
r resource index
O index set of the resources
C index set of accepted orders within the MPS planning

horizon
Y tuples of resources and periods (r;t) that exhibit a

shortfall to the lower level of the capacity utilization
greater than 0

Parameters

T length of planning horizon within MPS
Tmax length of planning horizon within OP
air production coefficient of order i with respect to resource r

cOP
it costs of the assigning order i to period t within OP

cMPS
it costs of assigning order i to period t within MPS

capmax
rt maximal available capacity of resource r in period t

capmin
rt lower level for the capacity utilization of resource r in

period t
k interval parameter for the MPS objective function

(0rkrT�1)
pleveling weighting factor for standardized deviations to the

lower level of the capacity utilization
Pserviceð�Þ weighting function for the standardized capacity avail-

able ctpþrt
a parameter used for the piecewise linear term within

Pserviceð�Þ

pservice weighting factor used within Pserviceð�Þ

panticipationweighting factor for the anticipated contribution to the
standardized deviations to the lower level of the capa-
city utilization ctp�rt

l capacity/demand ratio

Decision variables

xOP
it ¼

1 if order i is assigned to period tðOPÞ,

0 else :

(

xMPS
it ¼

1 if order i is assigned to period tðMPSÞ,

0 else :

(

ctprt unassigned capacity of resource r in period t
ctp�rt standardized deviations to the lower level of the capa-

city utilization capmin
rt of resource r in period t

ctpþrt capacity available of resource r in period t standardized
with respect to the maximal available capacity capmax

rt

Appendix B

See Tables 3–5.



Table 4
Option families, options, and take rates.

Resource r Option family Option family name Options Take rates taker

1y3 1 Transmission Manual Automatic – 0.92 0.08 0

4y6 2 Engine Gasoline Diesel Turbo diesel 0.50 0.45 0.05

7y9 3 Chassis Three door Five door – 0.60 0.40 0

10y12 4 Trim Standard Special GTI 0.82 0.10 0.08

13y15 5 ABS True False – 0.66 0.34 0

16y18 6 Air condition True False – 0.66 0.34 0

19y21 7 Sunroof True False – 0.25 0.75 0

22y24 8 Lateral airbag True False – 0.08 0.92 0

Table 5
ANOVA results (continued).

l Source Average costs of assignment Average periods on inventory Under-utilization

Sum of squares F-value p- value Sum of squares F-value p-value Sum of squares F-value p-value

1.0 pleveling
� pservice 0.318 9.96 0.002 0.079 3.58 0.059 136.45 2.47 0.117

pleveling
� panticipation 0.019 0.59 0.444 0.028 1.27 0.261 77.55 1.40 0.237

pservice
� panticipation 0.068 2.12 0.147 0.099 4.53 0.034 3.18 0.06 0.810

Model 330.44 184.52 0.000 49.85 40.56 0.000 6.81 106.72 0.000

Replication 314.90 196.94 0.000 42.95 39.14 0.000 62.505 117.08 0.000

1.2 pleveling
� pservice 0.019 0.92 0.337 0.126 1.15 0.284 42.13 3.95 0.048

pleveling
� panticipation 0.036 1.75 0.187 0.236 2.16 0.143 7.72 0.72 0.396

pservice
� panticipation 0.080 3.91 0.049 0.250 2.29 0.131 4.79 0.45 0.503

Model 78.446 68.15 0.000 243.31 39.75 0.000 572.99 185.28 0.000

Replication 59.350 57.75 0.000 186.57 34.14 0.000 524.41 189.92 0.000
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